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Abstract. Vortex stretching in a compressible fluid is considered. Two-dimensional (2D) and axisymmetric
cases are considered separately. The flows associated with the vortices are perpendicular to the plane of the
uniform straining flows. Externally-imposed density build-up near the axis leads to enhanced compactness
of the vortices — “dressed” vortices (in analogy to “dressed” charged particles in a dielectric system). The
compressible vortex flow solutions in the 2D as well as axisymmetric cases identify a length scale relevant
for the compressible case which leads to the Kadomtsev-Petviashvili spectrum for compressible turbulence.
Vortex reconnection process in a compressible fluid is shown to be possible even in the inviscid case —
compressibility leads to defreezing of vortex lines in the fluid.

PACS. 47.32.-y Vortex dynamics; rotating fluids

1 Introduction

The vortex stretching process

• leads to the transport of energy among various scales
of motion in a turbulent flow;

• plays an important role in the vortex reconnection pro-
cess and hence in describing the fine scales of turbu-
lence.

Vortex reconnection (Siggia and Pumir [1], Schatzle [2])
has been argued to be a prime candidate for a finite-
time singularity in Navier-Stokes equations. Such a sin-
gularity plays a central role in the small-scale dynam-
ics of turbulence by producing arbitrarily large velocity
gradients. However, vortex reconnection is a process that
is not yet well understood. Certain “canonical” cases of
vortex reconnection have been investigated in great de-
tail, both experimentally (Fohl and Turner [3], Oshima
and Asaka [4]) and numerically (Ashurst and Meiron [5],
Pumir and Kerr [6], Kida and Takaoka [7] and others).
But, a global view of the various reconnection scenarios is
not at hand yet.

Laboratory Experiments (Cadot et al. [8], Villermaux
et al. [9]) and DNS (Jimenez et al. [10]) have revealed
strong coherent and elongated vortices among the small
scales in incompressible turbulence. These vortices are be-
lieved to originate from strained vorticity fields like the
Burgers vortex (Burgers [11]). Burgers vortex describes
the interplay between the intensification of vorticity due
to the imposed straining flow and the diffusion of vor-
ticity due to the action of viscosity. The straining simu-
lates locally the stretching undergone by each vortex in
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the velocity field induced by other vortices. Intermittency
structures that exhibit velocity profiles similar to that
of Burgers vortex have been observed in grid turbulence
(Mouri et al. [12]).

The two-dimensional (2D) Burgers vortex solution is
of the form (Robinson and Saffman [13])

v = {−αx + u(x, y, t),−βy + v(x, y, t), (α + β)z}. (1)

The quantity (α+β) (α and β > 0) measures the stretch-
ing rate of vortices, which are aligned along the z-axis
(that is also the principal axis of a uniform plane strain-
ing flow). Numerical solutions of three-dimensional (3D)
Navier-Stokes equations (Ashurst et al. [14] and others)
have confirmed the alignment between the vorticity and
one principal axis of the local strain. The velocity induced
by the vorticity lies in the xy-plane, with components
u and v which are independent of z. Simple closed-form
steady solutions exist for the following special cases

• α = β > 0 - axisymmetric vortex;
• α > 0, β = 0 - 2D shear layer.

Robinson and Saffman [13] demonstrated the existence of
solutions for arbitrary values of the ratio α/β.

Unsteady 2D Burgers vortex solutions have been used
to model the spanwise structure of turbulent mixing layers
(Lin and Corcos [15], Neu [16]). Unsteady axisymmetric
Burgers vortex solutions have been used to model the fine-
scale structure of homogeneous incompressible turbulence
(Townsend [17], Lundgren [18]).

DNS (Porter et al. [19]) have confirmed the existence
of vortex filaments in compressible turbulence. The vor-
tex stretching process can be expected to be influenced in
an essential way by fluid compressibility (Shivamoggi [20]
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and [21]). So, investigation of stretched vortices in a com-
pressible fluid is in order which is addressed in this paper
along with applications to compressible turbulence.

Vortex reconnection in a compressible fluid is a topic
in its infancy (Virk et al. [22] and Shivamoggi [23]). Ad-
ditional mechanisms of vorticity generation like the baro-
clinic vorticity generation exist in a compressible fluid1.
The vortex reconnection process in a compressible fluid is
therefore more complicated than its counterpart in an in-
compressible fluid. Further exploration of the basic mech-
anism underlying this process is in order and is addressed
in general terms in this paper.

2 Modified 2D Burgers vortex

Consider a modified Burgers vortex flow with the velocity
field given by

v = {−γ(t)x, γ(t)y, W (x, t)}. (2)

(2) describes the convection of the vortex lines toward the
y-axis and the stretching along the y-axis by the imposed
straining flow. The straining flow is externally imposed, so
the vorticity is decoupled from the dynamics of the strain-
ing flow that is stretching it. The streamlines (see Fig. 1)
shown in the x, y-plane represent the uniform plane strain-
ing flow. This streamline pattern is the same in each plane
parallel to the x, y-plane. Observe that the flow associated
with the vortex in question is perpendicular to the plane
of the uniform straining flow, unlike the Burgers vortex
given by (1). This situation is well-suited for modelling
a mixing-layer flow or jet flow. (2) describes the convec-
tion of the vortex lines towards the x = 0 plane and the
stretching in the y-direction by the imposed straining flow.
The vorticity field corresponding to (2) is

ω = ∇× v =
{

0,−∂W

∂x
, 0

}
(3)

which shows that the vortex lines for this model are
aligned along the y-axis which happens to be the principal
axis of the uniform plane straining flow (2), however, as
in the Burgers vortex model (1).

Using (2) and (3), the vorticity conservation equation

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v + ν∇2ω (4)

becomes
∂Ω
∂t

− γx
∂Ω
∂x

= γΩ + ν
∂2Ω
∂x2

(5)

where ν is the kinematic viscosity and Ω is the vorticity-

Ω ≡ ∂W

∂x
. (6)

1 See Samtaney et al. [24] for an explicit calculation for a
planar gas interface refracting a shock.

Fig. 1. Modified Burgers vortex model.

Introducing dimensionless independent variables

ξ =
√

γ

ν
x, τ =

∫ t

γ(t′)dt′ (7)

equation (5) becomes

∂

∂ξ

(
∂Ω
∂ξ

+ ξΩ
)

=
∂Ω
∂τ

. (8)

Let the boundary conditions be

|ξ| ⇒ ∞ : Ω ⇒ 0. (9)

(i) Steady case:

For the steady case (with γ = constant), equation (8) be-
comes

d

dξ

(
dΩ
dξ

+ ξΩ
)

= 0. (10)

Using (9), equation (10) has the solution

Ω = c1e
−ξ2/2 (11)

or
W (ξ) = c1erf

(
ξ/
√

2
)

(12)

which represents the shear layer.
For this shear-layer flow solution, the build-up of vor-

ticity due to the convection of the vortex lines towards the
x = 0 plane and the stretching in the y-direction by the
imposed straining flow is counterbalanced by the diffusion
of vorticity in the x-direction.
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(ii) Unsteady case:

For the unsteady case, let us look for a solution of the
form

Ω(ξ, τ) = hλ(ξ)e−λτ . (13)

Equation (8) then yields

d

dξ

(
dhλ

dξ
+ ξhλ

)
= −λhλ. (14)

For bounded solutions of equation (14) to exist, we require

λ = n; n = 0, 1, 2, . . . (15)

Equation (14) then has the solution

hn(ξ) = (−1)nh0(ξ)Hn(ξ); n = 0, 1, 2, . . . (16)

where,
h0(ξ) = e−ξ2/2

and Hn(ξ) are the Hermite polynomials

H0(ξ) = 1, H1(ξ) = ξ, H2(ξ)

= ξ2 − 1, H3(ξ) = ξ3 − 3ξ, etc.

Observe that n = 0 (steady case) corresponds to the shear-
layer solution (11) while n = 1 (unsteady case) corre-
sponds to the jet solution.

3 Compressible modified 2D Burgers vortex

Let us now consider the modified 2D Burgers vortex in
a compressible barotropic fluid. For this purpose, let the
velocity and density profiles be given by (Shivamoggi [20])

v = {α̇(t)x, β̇(t)y, W (x, t)} (17a)

ρ = σ(t) +
ρ0

U
(α̇ + β̇)x. (17b)

where ρ0 and U are reference density and velocity, re-
spectively. Equation (17) describes a density build-up (or
decrease) in the direction along which vortex lines are be-
ing compressed by the imposed straining flow. This ar-
rangement maximizes compressibility effects on the vortex
stretching process.

Using (17), the mass-conservation equation

∂ρ

∂t
+ (v · ∇)ρ + ρ(∇ · v) = 0 (18)

yields

σ̇ +
ρ0

U

(
α̈ + β̈

)
x + α̇

ρ0

U
x(α̈ + β̈)

+
[
σ +

ρ0

U
(α̇ + β̇)x

]
(α̇ + β̇) = 0 (19)

from which, we obtain the following relations

σ̇ + σ(α̇ + β̇) = 0 (20)

(α̈ + β̈) + α̇(α̇ + β̇) + (α̇ + β̇)2 = 0. (21)

Using equation (20), equation (21) becomes

d

dt

(
σ̇

σ

)
+ α̇

(
σ̇

σ

)
−

(
σ̇

σ

)2

= 0. (22)

Next, using (17), the vorticity conservation equation

ρ

[
∂ω

∂t
+ (v · ∇)ω

]
+ ∇ρ ×

[
∂v
∂t

+ (v · ∇)v
]

=

ρ(ω · ∇)v − ρ(∇ · v)ω + µ∇2ω (23)

leads to

[
σ +

ρ0

U
(α̇ + β̇)x

] [
∂2W

∂x∂t
+ α̇x

∂2W

∂x2

]

+
ρ0

U
(α̇ + β̇)

[
∂W

∂t
+ α̇x

∂W

∂x

]

= −α̇
∂W

∂x

[
σ +

ρ0

U
(α̇ + β̇)x

]
+ µ

∂3W

∂x3
(24)

(α̇ + β̇)(β̈ + β̇2) = 0 (25)

where µ is the dynamic viscosity.
Using (20), and the z-component of the equation of

motion, namely,

ρ

(
∂W

∂t
+ α̇x

∂W

∂x

)
= µ

∂2W

∂x2
(26)

equations (24) and (25) become

[
σ − ρ0

U

(
σ̇

σ

)
x

] [
∂Ω
∂t

+ α̇x
∂Ω
∂x

+ α̇Ω
]

−
ρ0
U

(
σ̇
σ

)
[
σ − ρ0

U

(
σ̇
σ

)
x
]µ

∂Ω
∂x

= µ
∂2Ω
∂x2

(27)

σ̇

σ

(
β̈ + β̇2

)
= 0. (28)

For the compressible case, σ̇/σ �= 0, so equation (28) re-
duces to

β̈ + β̇2 = 0. (29)

In order to facilitate an analytic solution, consider the case

σ = e
∫ t c(t′)dt′ , α̇ = −a, β̇ = b. (30)

Equations (20), (22) and (29) then yield a closed set of
equations for a(t), b(t) and c(t):

b(t) =
1

t + A
, c(t) =

e
∫

t a(t′)dt′

B − ∫ t
e

∫
t′ a(t′′)dt′′dt′

,

a(t) = c(t) + b(t), (31)
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where A and B are arbitrary constants.
Equation (27) then becomes

(
ρ0e

∫ t c(t′)dt′ − ρ0

U
cx

) (
∂Ω
∂t

− ax
∂Ω
∂x

− aΩ
)

−
(

ρ0
U

)
c(

ρ0e
∫ t c(t′)dt′ − ρ0

U cx
)µ

∂Ω
∂x

= µ
∂2Ω
∂x2

. (32)

In order to simplify equation (32), let us assume that the
compressibility effects are weak. From (20) and (30), this
implies that the quantity c(t), which is a measure of the
density change, is small. Equation (22) then leads to

dc

dt
− a(t)c ≈ 0 (33)

from which,
c(t) ≈ c0e

∫
t a(t′)dt′ (34)

c0 being an arbitrary constant. Equation (34) replaces
the second of the three solutions in (31). Further, in the
weakly-compressible case, equation (28) (which, to first
approximation, is automatically satisfied) does not lead
to equation (29) which, therefore, has to be abandoned.
This implies that the first of the three solutions in (31),
which comes from equation (29), also has to be dropped.

Thus, keeping only terms of O(c), and introducing di-
mensionless independent variables

ξ ≡
√

a

µ
x, τ ≈

∫ t

a(t′)dt′ (35)

equation (32) may be approximated by

∂

∂ξ

[
∂Ω
∂ξ

+ ξΩ
]

=
∂Ω
∂τ

− c̃
∂Ω
∂ξ

(36)

where,

c̃(τ) ≡ c(t(τ))
ρ0U

√
µ

a(τ)
.

The approximation implicit in equation (36) gets better
as viscosity increases. The boundary conditions on Ω are
the same as in (9).

Comparison of equation (36) with the corresponding
equation (8) for the incompressible case shows that the
last term on the right hand side in equation (36) repre-
sents the first-order contribution due to the compressibil-
ity effects (assumed to be weak). Further, observe that
the compressibility effects impart hyperbolic character to
equation (36), associated with sound-wave propagation in
the fluid.

As a first approximation, if we ignore the time-
dependence of the straining-flow profiles, and hence, c̃(τ),
and treat c̃(τ) as a constant, equation (36) can be solved
exactly to give

Ω(τ, ξ) ≈ (−1)ne−
(ξ+c̃τ)2

2 Hn(ξ + c̃τ)e−nτ (37)

where Hn(ξ) are the Hermite polynomials.

Comparison of the compressible vortex profile (37)
with the corresponding compressible vortex profile (13),
(15) and (16) shows that, for the 2D case, the first-order
effect of compressibility is to cause a mere Galilean
translation in space of the incompressible vortex profiles.
Therefore, in order to capture non-trivial effects of com-
pressibility in the 2D case one needs to consider the time
dependence of the straining-flow profiles. This restriction
turns out to be relaxed for the axisymmetric case (below).

4 Compressible axisymmetric stretched vortex

Consider an axisymmetric stretched vortex in a compress-
ible barotropic fluid (Shivamoggi [21]). Let the velocity (in
cylindrical polar coordinates (r, θ, z)) and the density pro-
files be given by2

v = {α̇(t)r, W (r, t), β̇(t)z} (38a)

ρ = σ(t) +
ρ0

U
(2α̇ + β̇)r (38b)

where ρ0 and U are reference density and velocity, respec-
tively. (38) describes a density build-up (or decay) towards
the z-axis (which is also the direction along which vortex
lines are being compressed by the imposed straining flow).

The vorticity field corresponding to (38) is

ω = ∇× v = {0, 0, Ω}, (39)

where
Ω = DrW, Dr ≡ ∂

∂r
+

1
r
.

Equation (39) shows that the vortex lines for this model
are aligned along the z-axis, which happens to be the prin-
cipal axis of the axisymmetric uniform straining flow (38).
Further, the flow associated with the vortex is again per-
pendicular to the plane of the uniform straining flow, a
situation that is well suited to modeling an axisymmetric
mixing-layer flow. Equation (38) describes the convection
of the vortex lines towards the z-axis and the stretching
along the z-axis by the imposed straining flow.

Using (38), the mass-conservation equation (18) yields

σ̇ +
ρ0

U

(
2α̈ + β̈

)
r + ȧr

ρ0

U

(
2α̇ + β̇

)

+
[
σ +

ρ0

U

(
2α̇ + β̇

)
r
] (

2α̇ + β̇
)

= 0 (40)

which leads to the following relations

σ̇ + σ(2α̇ + β̇) = 0 (41)

(2α̈ + β̈) + α̇(2α̇ + β̇) + (2α̇ + β̇)2 = 0. (42)

Combining equations (41) and (42), we obtain

d

dt

(
σ̇

σ

)
+ α̇

(
σ̇

σ

)
−

(
σ̇

σ

)2

= 0. (43)

2 A general class of velocity-field profiles of which (38a) is a
special case has been discussed by Ohkitani and Gibbon [25].
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Next, using (38), the vorticity conservation equation (23)
leads to

[
σ +

ρ0

U

(
2α̇ + β̇

)
r
] [

∂Ω
∂t

+ α̇r
∂Ω
∂r

]

+
ρ0

U

(
2α̇ + β̇

)[
∂W

∂t
+ α̇r

∂W

∂r
+ α̇W

]

= −2
[
σ +

ρ0

U

(
2α̇ + β̇

)
r
]
α̇Ω + µDr

∂Ω
∂r

(44)

(
2α̇ + β̇

)(
β̈ + β̇2

)
= 0. (45)

Using equation (41), and the θ-component of the equation
of motion, namely

ρ

(
∂W

∂t
+ α̇r

∂W

∂r
+ α̇W

)
= µ

∂

∂r
(DrW ) (46)

equations (44) and (45) become

[
σ − ρ0

U

(
σ̇

σ

)
r

] [
∂Ω
∂t

+ α̇r
∂Ω
∂r

+ 2α̇Ω
]

−
ρ0
U

(
σ̇
σ

)
[
σ − ρ0

U

(
σ̇
σ

)
r
]µ

∂Ω
∂r

= µDr
∂Ω
∂r

(47)

σ̇

σ

(
β̈ + β̇2

)
= 0. (48)

For the compressible case, σ̇/σ �= 0, so equation (48) leads
to

β̈ + β̇2 = 0. (49)

In order to facilitate an analytic solution, consider again
the case

σ(t) = ρ0e
∫

t c(t′)dt′ , α̇(t) = −1
2
a(t),

β̇(t) = b(t). (50)

Equations (41), (43), and (49) then yield a closed set of
equations for the quantities a(t), b(t), and c(t) (which are
the same as those for the 2D case):

b(t) =
1

t + A
, c(t) =

e
1
2

∫
t a(t′)dt′

B − ∫ t
e

1
2

∫ t′ a(t′′)dt′′dt′
,

a(t) = b(t) + c(t) (51)

where A and B are arbitrary constants.
Equation (47) then becomes

(
ρ0e

∫ t c(t′)dt′ − ρ0

U
cr

) (
∂Ω
∂t

− 1
2
ar

∂Ω
∂r

− aΩ
)

− (ρ0
U )c(

ρ0e
∫ t c(t′)dt′ − ρ0

U cr
)µ

∂Ω
∂r

= µDr
∂Ω
∂r

. (52)

In order to simplify equation (52), let us assume again
that the compressibility effects are weak. (41) and (50)

imply that the quantity c(t), which is a measure of the
density change, is then small. Equation (43) becomes

dc

dt
− 1

2
a(t)c ≈ 0 (53)

from which
c(t) ≈ c0e

1
2

∫
t a(t′)dt′ (54)

c0 being an arbitrary constant. (54) replaces the sec-
ond of the three solutions in (51). Further, in the
weakly-compressible case, equation (48) (which, to first
approximation, is automatically satisfied) does not lead
to equation (49) which, therefore, has to be dropped. This
implies that the first of the three solutions in (51), which
comes from equation (49), also has to be dropped, as in
the 2D case.

Thus, keeping only terms of O(c), equation (52) may
be approximated by

∂Ω
∂t

− νc

U

∂Ω
∂r

− ar

2
∂Ω
∂r

≈ aΩ + ν
(
1 +

cr

U

)
Dr

∂Ω
∂r

(55)

where
ν ≡ µ

ρ0
.

Let us look for a solution of the form (à la Lundgren [18])

Ω(r, t) = S(t)Ω̂(ξ, τ)

ξ ≡
√

S(t) r, τ ≡
∫ t

0

S(t′)dt′, S(t) = e
∫

t
0 a(t′)dt′ .

(56)

Equation (55) then becomes

∂Ω̂
∂τ

− ĉ
∂Ω̂
∂ξ

≈ ν

(
1 +

ĉ

ν
ξ

)
Dξ

∂Ω̂
∂ξ

(57)

where

ĉ(t) ≡ νc(t)
U

√
S(t)

Dξ ≡ ∂

∂ξ
+

1
ξ
.

The imposed straining flow has been transformed away
by the Lundgren transformation (56). The approximation
implicit in equation (56) gets better again as viscosity in-
creases. Observe that the second term on the left hand side
in equation (57) represents the first -order contribution
due to the compressibility effects (assumed to be weak)
— the compressibility effects impart a hyperbolic charac-
ter to equation (57), as in the 2D case.

(i) Quasi-steady solution

Equation (57) admits a quasi-steady solution given by

Ω̂ = Ω̂(ξ) (58)

which satisfies

ĉ
∂Ω̂
∂ξ

+ ν

(
1 +

ĉ

ν
ξ

)
Dξ

∂Ω̂
∂ξ

≈ 0. (59)



488 The European Physical Journal B

Equation (59) has the solution

Ω̂ ≈ CEi

(
ĉ

ν
ξ

)
= CEi

(
c(t)
U

r

)
(60)

where Ei(x) is the exponential integral

Ei(x) ≡
∫ ∞

x

eu

u
du,

and C is an arbitrary constant.
(60) has the following asymptotic behavior -

Ω̂ ∼ 1
r
e−

c(t)
U r, r large. (61)

The exponential decay of the vorticity for large r signi-
fies the enhanced compactness of the vortices due to an
externally-imposed density build-up near the axis. One
may in fact view (61) as a “dressed ” vortex in anal-
ogy with the terminology in the dielectric screening of
a charged particle polarizing the surrounding medium
(Ashcroft and Mermin [26])! “Dressed” vortex owes its ex-
istence to a counter-conventional externally-imposed den-
sity build-up in the vortex core3 (which is in contrast to a
density drop in the vortex core in a normal compressible
case).

(ii) Unsteady solution

For the unsteady case, equation (57) has an approximate
solution

Ω̂ ≈ f(ξ + ĉτ)
1
τ

e−
ξ2

4ντ (62)

where f(x) is an arbitrary function of x. (62) may be
viewed as a propagating axisymmetric vortex in a com-
pressible fluid4.

If a(t) = const. = a,5 using (62),(56) becomes

Ω ≈ a
f

[
e

1
2 at

{
r + νc

aU (1 − e−at)
}]

(1 − e−at)
e
− ar2

4ν(1−e−at) . (63)

Observe that (63), in the limit t ⇒ ∞, gives the axisym-
metric steady Burgers vortex:

Ω ≈ Γa

4πν
e−

ar2
4ν (64)

3 Such vortices do not appear to be stable because the den-
sity increase in a direction opposite to that of the effective
gravity due to the centrifugal force (which is directed away
from the axis) would correspond to a top heavy arrangement
under gravity. Indeed, swirling flows are found to be stabi-
lized by a density stratification increasing in the radial di-
rection (Howard [27]) while the vortex breakdown process is
found to be delayed by the latter type of density stratification
(Shivamoggi and Uberoi [28]).

4 Dissipative effects subsequently intervene and sustain the
reconnection process.

5 The case a(t) = const., according to (51), is valid only
in the weak-compressibility limit (small c), and in the generic
situation (arbitrary c) it is not valid.

where Γ is the circulation around the vortex (and f has
been chosen suitably).

The azimuthal velocity corresponding to (64) is

W =
Γ

2πr

(
1 − e−

ar2
4ν

)
. (65)

(65) describes a rigid-body rotation for small r, and an
irrotational flow field for large r. The azimuthal velocity
is maximum for r = r∗ ∼ √

ν/a. Thus, r∗, which may
be taken to be radius of the vortex core, is of the order of
Kolmogorov microscale η ∼ (ν3/ε)1/4, if a ∼ √

ε/ν ε being
the energy dissipation rate in turbulence.

5 Applications to turbulence

(i) Incompressible turbulence

(64) implies that the relevant length scale for the incom-
pressible case is

�2 ∼ ν

a
. (66)

Taking the core radii of Burgers vortices to be of the order
of Kolmogorov microscale we have

a ∼ ε1/2ν−1/2 (67)

where,

ε ∼ ν
U2

�2
. (68)

Equations (66)–(68) lead to

U ∼ ε1/3�1/3 (69)

and hence to the celebrated Kolmogorov [29] spectrum for
incompressible turbulence

E(k) ∼ ε2/3k−5/3. (70)

(ii) Compressible turbulence

(37) and (63) imply that the relevant length scale for the
compressible case is

� ∼ νc

aU
. (71)

Recalling that c ⇒ 0 corresponds to the incompressible
limit, we may write

c ∼ MU

�
(72)

where M is a reference Mach number of the flow

M ∼ U

C
(73)

C being a reference speed of sound.
Further, writing

a ∼ U

�
(74)
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we have, from (71),
� ∼ ν

C
. (75)

On noting now that the energy dissipation rate can be
written as

ε̂ ∼ µ
U2

�2
(76)

we obtain, from (75),

U ∼ ρ−1/2ε̂1/2C−1/2�1/2 (77)

which leads to the Kadomtsev-Petviashvili [30] spectrum
for compressible turbulence

E(k) ∼ ε̂C−1k−2. (78)

6 Vortex reconnection in a compressible fluid

We consider a generalization of Greene’s [31] local vor-
tex pseudo-advection (the terminology is, however, due to
Vallis et al. [32]) to make a general discussion of the vortex
reconnection process in a compressible fluid.

The vorticity evolution equation in an inviscid fluid is

∂ω

∂t
+ ∇× (ω × v) = −∇×

(
1
ρ
∇p

)
. (79)

The term on the right represents baroclinic vorticity gen-
eration which is due to the misalignment of density and
pressure gradients. Note that for an incompressible or a
compressible barotropic fluid this term vanishes, so the
vorticity evolution in an inviscid incompressible or a com-
pressible barotropic fluid is simply a local vortex advection
signifying the absence of vortex reconnection.

On the other hand, for a compressible non-barotropic
fluid, if

ω · 1
ρ
∇p = 0, ∀x ∈ V (80)

V being the volume occupied by the fluid, i.e., the vortex
lines are confined to the isobaric (p = const.) surfaces,
then one may write

1
ρ
∇p = ω × W, ∀x ∈ V . (81)

Equation (79) then becomes

∂ω

∂t
+ ∇× [ω × (v + W)] = 0. (82)

(82) implies that, under condition (80), the vorticity evo-
lution in a compressible non-barotropic fluid corresponds
to a local vortex pseudo-advection by a modified velocity
v + W where, from (81),

W =
1

ρ ω2
∇p × ω. (83)

Further, the helicity

H ≡ ω · v (84)

which is a topological measure of the degree of knottedness
of vortex lines, then evolves according to

∂H

∂t
+ ∇ · [(v + W)H ] = ∇ ·

[
ω

(
H +

1
2
v2

)]
. (85)

Integrating equation (85) over the volume V(t) enclosed
by a surface S(t) moving with velocity v + W on which
ω · n̂ = 0 (i.e., S(t) is a vortex surface, as implied by
equation (82)), we obtain

d

dt

∫
V(t)

Hdx = 0. (86)

So, provided (80) is valid, the total helicity is conserved,
even in a compressible non-barotropic fluid, despite the
existence of baroclinic vorticity generation mechanism.

It should be noted however that the prevalence of local
vortex pseudo-advection and hence the absence of vortex
reconnection is a sufficient (but not necessary) condi-
tion for conserving the total helicity also in a compress-
ible fluid. Therefore, the absence of local vortex pseudo-
advection and hence the occurrence of vortex reconnection
does not guarantee the destruction of the total helicity in-
variant.

In the generic compressible non-barotropic case, where
(80) is not valid, the vorticity evolution does not corre-
spond to a local vortex pseudo-advection. This paves the
way for the occurrence of vortex reconnection in a com-
pressible non-barotropic fluid even in the inviscid case!
DNS of the reconnection process between two anti-parallel
vortex tubes (Virk et al. [22]) in fact showed that shocklet
formation was able to get reconnection going in a com-
pressible fluid6.

Inviscid compressible vortex reconnection is very akin
to the collisionless magnetic reconnection process in high-
temperature tenuous plasmas where resistivity is negli-
gible (Coppi [33], Schindler [34], Drake and Lee [35],
Ottaviani and Porcelli [36], Shivamoggi [37]–[39]). Here,
the conservation of magnetic flux is replaced by the conser-
vation of generalized magnetic flux (that now includes con-
tributions from the electron-fluid momentum). So, mag-
netic flux changes and magnetic reconnection processes
are sustainable even without resistivity!

7 Discussion

In this paper, stretched (modified Burgers) vortices are
considered in a compressible fluid. The flows associated
with the vortices are perpendicular to the plane of the uni-
form straining flows — a situation relevant for a mixing-
layer flows. Compressibility effects have been restricted to
be weak to facilitate analytic solutions. The compressible
axisymmetric stretched vortex

6 Dissipative effects subsequently intervene and sustain the
reconnection process.



490 The European Physical Journal B

• exhibits exponential decay of the vorticity for large r
signifying the enhanced compactness of the vortices
caused by an externally-imposed density build-up near
the axis – “dressed” vortices,

• has the axisymmetric Burgers vortex as the asymptotic
limit (t ⇒ ∞).

The compressible vortex flow solutions in the 2D as well
as axisymmetric cases identify a length scale relevant
for the compressible case which leads to the Kadomtsev-
Petviashvili [30] spectrum for compressible turbulence.

Vortex reconnection in a compressible non-barotropic
fluid is possible even in the inviscid case – compressibility
leads to defreezing of vortex lines in the fluid. This is very
similar to the collisionless magnetic reconnection process
in high-temperature tenuous plasmas.

The possibility of vortex reconnection in an inviscid
fluid can raise some questions of principle (á la Taylor, as
quoted in [36], for the collisionless magnetic reconnection
process). Since the process is reversible one might wonder
if the reconnection in such a system is only a transient
phenomenon and if the vortex lines will eventually unre-
connect. However, the essential presence of even a very
small viscosity would inhibit the latter process.

My thanks are due to Peter Constantin, Klaus Elsässer, Bob
Kerr, Keith Moffatt, Henri Tasso, Mahinder Uberoi as well as
the referees for valuable remarks and suggestions.
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